Regulatory role of the PKA pathway in dimorphism and mating in Yarrowia lipolytica.

نویسندگان

  • José A Cervantes-Chávez
  • Florencia Kronberg
  • Susana Passeron
  • José Ruiz-Herrera
چکیده

Previous studies on the dimorphic transition of Yarrowia lipolytica suggested opposite roles for MAPK and PKA pathways in this phenomenon. To obtain conclusive evidences for these opposite roles we isolated and disrupted the unique gene encoding the Pka catalytic subunit (TPK1). TPK1 was regulated only at the post-transcriptional level, with Pka activity increasing during yeast-like growth. tpk1 null mutants were viable and without growth defects, but more sensitive to different stress conditions. Deltatpk1 mutants were mating-deficient, and grew constitutively in the mycelial form, whereas Deltaste11 (Mapkkk-less)/Deltatpk1 double mutants grew in the yeast form, indicating that this is the default growth pattern of the fungus. Our data confirm that MAPK and PKA pathways operate in opposition during the dimorphic behavior of Y. lipolytica, but synergic in mating. These data stress the idea that in different fungi both signal transduction systems may operate distinctly or even be antagonistic or synergic in the coordination of cell responses to different stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The optimization of Naringenin biosynthesis pathway using Yarrowia lipolitica cell culture

Yarrowia lipolytica, as a good cell factory to speed up the production of plant pharmaceutical components, has been considered to be one of the most important and attractive micro-organisms in recent years, due to its high secretion capacity, limited glycosylation, large range of genetic markers and molecular tools. Naringenin, as a central core of flavonoids production, plays important roles b...

متن کامل

Isolation and characterization of YlBEM1, a gene required for cell polarization and differentiation in the dimorphic yeast Yarrowia lipolytica.

The ability to switch between a unicellular yeast form and different filamentous forms (fungal dimorphism) is an important attribute of most pathogenic fungi. Dimorphism involves a series of events that ultimately result in dramatic changes in the polarity of cell growth in response to environmental factors. We have isolated and characterized YlBEM1, a gene encoding a protein of 639 amino acids...

متن کامل

MHY1 encodes a C2H2-type zinc finger protein that promotes dimorphic transition in the yeast Yarrowia lipolytica.

The yeast-to-hypha morphological transition (dimorphism) is typical of many pathogenic fungi. Dimorphism has been attributed to changes in temperature and nutritional status and is believed to constitute a mechanism of response to adverse conditions. We have isolated and characterized a gene, MHY1, whose transcription is dramatically increased during the yeast-to-hypha transition in Yarrowia li...

متن کامل

Metabolic Flux Analysis of Lipid Biosynthesis in the Yeast Yarrowia lipolytica Using 13C-Labled Glucose and Gas Chromatography-Mass Spectrometry

The oleaginous yeast Yarrowia lipolytica has considerable potential for producing single cell oil, which can be converted to biodiesel, a sustainable alternative to fossil fuels. However, extensive fundamental and engineering efforts must be carried out before commercialized production become cost-effective. Therefore, in this study, metabolic flux analysis of Y. lipolytica was performed using ...

متن کامل

The production of Yarrowia lipolytica lipase powder by improved spray-drying method

Lipase is used in the production of foods, flavor enhancers, detergents, cosmetics and pharmaceuticals. A common impediment to the production of commercial enzymes is their low-stability aqueous solutions. In this study, the downstream process was investigated to obtain a stable spray-dried lipase powder of Yarrowia lipolytica. The enzyme solution samples were supplemented with different concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fungal genetics and biology : FG & B

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2009